Assessment of EEG dynamical complexity in Alzheimer's disease using multiscale entropy.

نویسندگان

  • Tomoyuki Mizuno
  • Tetsuya Takahashi
  • Raymond Y Cho
  • Mitsuru Kikuchi
  • Tetsuhito Murata
  • Koichi Takahashi
  • Yuji Wada
چکیده

OBJECTIVE Multiscale entropy (MSE) is a recently proposed entropy-based index of physiological complexity, evaluating signals at multiple temporal scales. To test this method as an aid to elucidating the pathophysiology of Alzheimer's disease (AD), we examined MSE in resting state EEG activity in comparison with traditional EEG analysis. METHODS We recorded EEG in medication-free 15 presenile AD patients and 18 age- and sex-matched healthy control (HC) subjects. MSE was calculated for continuous 60-s epochs for each group, concurrently with power analysis. RESULTS The MSE results from smaller and larger scales were associated with higher and lower frequencies of relative power, respectively. Group analysis demonstrated that the AD group had less complexity at smaller scales in more frontal areas, consistent with previous findings. In contrast, higher complexity at larger scales was observed across brain areas in AD group and this higher complexity was significantly correlated with cognitive decline. CONCLUSIONS MSE measures identified an abnormal complexity profile across different temporal scales and their relation to the severity of AD. SIGNIFICANCE These findings indicate that entropy-based analytic methods with applied at temporal scales may serve as a complementary approach for characterizing and understanding abnormal cortical dynamics in AD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing the Effects of Alzheimer’s disease on EEG Signals Using the Entropy Measure: a Meta-Analysis

Introduction and Aims: Alzheimer’s disease is the most prevalent neurodegenerative disorder and a type of dementia. 80% of dementia in older adults is because of Alzheimer’s disease. According to multiple research articles, Alzheimer's has several changes in EEG signals such as slowing of rhythms, reduction in complexity and reduction in functional associations, and disordered functional commun...

متن کامل

Multiscale Entropy Analysis of Eeg from Patients under Different Pathological Conditions

Multiscale sample entropy (MSE) of human electroencephalogram (EEG) data from patients under different pathological conditions of Alzheimer’s disease (AD) was evaluated to measure the complexity of the signal. Quantifying the complexity level with respect to various temporal scales, MSE analysis provides a dynamical description of AD development. When compared to EEG data from normal subjects, ...

متن کامل

A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis

Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...

متن کامل

Analysis of electroencephalograms in Alzheimer's disease patients with multiscale entropy.

The aim of this study was to analyse the electroencephalogram (EEG) background activity of Alzheimer's disease (AD) patients using multiscale entropy (MSE). MSE is a recently developed method that quantifies the regularity of a signal on different time scales. These time scales are inspected by means of several coarse-grained sequences formed from the analysed signals. We recorded the EEGs from...

متن کامل

Univariate and Multivariate Generalized Multiscale Entropy to Characterise EEG Signals in Alzheimer's Disease

Alzheimer’s disease (AD) is a degenerative brain disorder leading to memory loss and changes in other cognitive abilities. The complexity of electroencephalogram (EEG) signals may help to characterise AD. To this end, we propose an extension of multiscale entropy based on variance (MSEσ2 ) to multichannel signals, termed multivariate MSEσ2 (mvMSEσ2 ), to take into account both the spatial and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology

دوره 121 9  شماره 

صفحات  -

تاریخ انتشار 2010